Blue color

Researchers develop the longest lasting deep-blue CMA TADF OLED emitters

Researchers from the University of Manchester, University of Cambridge and University of Eastern Finland, led by Dr. Alexander Romanov have developed a new deep-blue Carbene-Metal-Amide (CMA) OLED emitter material with promising operating lifetime.

The emitter is based on a a new CMA complex with a rigid amide donor, benzoguanidine. The researcher say that the new design unlocks bright charge-transfer deep-blue emission with 100% photoluminescence quantum yields. The excited state lifetimes of the new CMA complexes are among the lowest reported to date among all TADF emitters
(down to 213 ns), resulting in remarkably fast radiative rates of up to 4.7 × 10 6 s−1

Read the full story Posted: Jun 03,2024

Reesearchers develop a highly-accurate AI model to predict the performance of blue OLED emitters

Researchers from Chung-Ang University developed a new AI model to predict the characteristics of blue OLED devices. The new model is highly accurate - and achieved a prediction accuracy of 99.2% for the triplet fusion rate constant and 99.9% for the triplet emission rate.

To develop this model, the researchers first developed modeling that improved the calculation accuracy of the triplet emission ratio, one of the key properties of blue light emitting materials. Based on this modeling, an AI model was created to predict the triplet emission ratio and fusion rate constant by generating a transient EL extinction curve.

Read the full story Posted: May 22,2024

Researchers develop novel deep blue OLED emitters based on a 5Cz-BO molecule

Researchers from the University of Science and Technology of China (USTC), in collaboration with scientists from the University of Cambridge and Beijing Information Science and Technology University developed a novel blue OLED emitter design, based on 5Cz-BO molecules, that offers highly efficient emission with a narrow emission spectrum.

The new OLED emitters incorporate multiple carbazole donor groups into the multiple resonance (MR) type electron acceptor units. This design offers narrow-band short-range charge transfer excited states and it also reduced the energy level difference between the molecule’s singlet and triplet states.

Read the full story Posted: May 19,2024

Universal Display reports excellent financial results for Q1 2024

Universal Display announced its financial results for the first quarter of 2024. Total revenues were $165.3 million (up from $130.5 million in Q1 2023), and a net income of $56.9 million (up from $39.8 million).

UDC PHOLED materials photo (2017)
UDC says it seas meaningful growth opportunities across several verticals: the IT display market, TVs, smartphones, and foldable phones. UDC raised the lower end of its guidance for 2024, now it believes it will be in the range of $635 million to $675 million.

Read the full story Posted: May 03,2024

The Elec: UDC's blue PHOLED material is still unstable, may delay market introduction

Universal Display Corporation has announced several times that it is progressing with its blue PHOLED material development, and it is on track to release the first commercial material by the end of 2024. In November 2023 we reported that UBI estimates that Samsung has delayed the adoption of a blue PHOLED to the second half of 2025.

UDC RGB PHOLED materials photoNow there's a new report in Korea that claims that UDC's blue PHOLED project is facing technical challenges, and UDC is still not able to achieve a long-lasting blue emitter at the right color point. It will be interesting to know whether UDC addresses this issue in its next investor conference call (May 2nd). 

Read the full story Posted: Apr 16,2024

UK researchers develop promising new hyperfluorescence blue OLED materials

Researchers from the UK's Northumbria, Cambridge, Imperial and Loughborough universities developed a new Hyperfluorescence OLED emitter system based on a new molecular design, which is highly efficient and simple to produce.

The researchers explain, that in Hyperfluorescence  systems, the elimination of the Dexter transfer to terminal emitter triplet states is the key towards OLED efficiency and stability. Current devices rely on high-gap matrices to prevent Dexter transfer, which unfortunately leads to overly complex devices from a fabrication standpoint. The researchers developed a novel molecular design in which ultranarrowband blue emitters are covalently encapsulated by insulating alkylene straps. 

Read the full story Posted: Mar 17,2024

UDC reported its financial results for Q4 2023, sees a new cycle of investments in the OLED industry

Universal Display Corporation reported its financial results for Q4 2023, with revenues of $158 million, and a net income of $62 million. For the whole year (2023), UDC reproted revenues of $576 million and net income of $203 million. The company ended 2023 with $800 million in cash and equivalents, and has increased its quarterly dividend.

UDC RGB PHOLED materials photoUDC says that the market still suffers from soft spending in smartphone and premium TVs. UDC, however, says that it believes that the OLED industry is starting a new and exciting multiyear investment cycle.

Read the full story Posted: Feb 23,2024

Samsung researchers collaborate with the UK's NPL to better understand blue OLED degradation mechanisms

Researchers from the UK's National Physical Laboratory (NPL), together with the Samsung Advanced Institute of Technology (SAIT), released a new study to better understand the degradation of blue OLED devices. 

Close-up of the OrbiSIMS instrument’s vacuum chamber showing the nozzles of the ion beams and electrode that extract ionised molecules for analysis (Picture credit: NPL)

The OLED degradation mechanisms that limit the lifetime of blue OLED emitters, whether physical, chemical or something else, are still not yet fully understood. Understanding the degradation mechanism of blue OLEDs is essential to improve their performance and stability. The NPL / SAIT team used OrbiSIMS, an innovative mass spectrometry imaging technique invented at NPL in 2017, to study OLED degradation. 

Read the full story Posted: Feb 15,2024

Researchers from Durham University use long-forgotten OLED emitter molecules to enable highly efficient hyperfluorescence OLED devices

Researchers Durham University, led by Professor Andrew Monkman, discover new OLED emitters that offer high performance in a hyperfluorescence emission system. The main new material, a molecule called ACRSA, was found to triple the efficiency of hyperfluorescence OLED devices.

These OLED emitters aren't actually new - they were studied years ago, but were found to be poor emitters. That was true when used as OLED emitters, but when used in a hyperfluorescence system (which combines both fluorescent and TADF emitters), these were surprisingly efficient. The ACRSA emits a green emission, but deep blue light emission can be achieved by transferring ACRSA's energy to a blue terminal emitter. This approach reduces exciton energy compared to direct blue emission in devices, allowing more stable, longer-lasting blue OLEDs.

Read the full story Posted: Feb 13,2024

DSCC: the OLED materials market to grow from $1.7 billion in 2023 to $2.7 billion in 2027

DSCC estimates that the market for OLED evaporation materials (i.e. OLED stack materials) will reach $1.7 billion in 2023, and will grow to $2.7 billion in 2027 (a 11% CAGR from 2023). If UDC will succeed to commercially introduce a blue phosphorescence material, revenues can even be much higher.

OLED materials used in TV applications (and other large-area applications) will grow from $305 million in 2023, to $492 million in 2027, a 13% CAGR. DSCC also sees very fast growth in material used to produce tandem-structure IT displays, which will grow at a 79% CAGR to reach $443 million in 2027.

Read the full story Posted: Jan 10,2024