Technical / Research - Page 3

Samsung Display: we develop blue OLED emitter technologies, both PHOLED and TADF based

Samsung Display's Lee Chang-hee, VP and head of SDC's research center, gave a talk during K-Display 2024, and updated that Samsung is progressing towards a next-generation blue OLED emitter technology in two tracks.

SDC is working with Universal Display, to adopt the company's blue PHOLED system. This is progressing, but SDC says that the pace is slow - indeed we heard from UDC lately that the introduction of a commercial material will take longer than expected.

Read the full story Posted: Aug 15,2024 - 1 comment

Researchers develop an OLED-on-OTFT process to create high aperture wearable OLED devices

Researchers from China's Northeast Normal University developed a new integration strategy (called “discrete preparation-multilayer lamination”) that enables the deposition of OLED devices directly on top of OTFT transistors, to enable high-aperture wearable skin-patch OLED devices.

The new method starts with the preparation of the different layers on different substrates to avoid chemical and physical damage caused by process interferences, and then the transfer of the OLED devices onto the OTFT transistors. The researchers say that the resulting AMOLED display offers a high apreture ratio (83%), high mobility

Read the full story Posted: Aug 09,2024

The Fraunhofer IPMS manages to increase the transparency of its OLED microdisplays to 45%

A few months ago researchers from the Fraunhofer IPMS announced that they have developed semi-transparent yellow high resolution OLED microdisplays, that are significantly lighter than conventional combiner-based optical see-through near-to-eye systems. 

The Fraunhofer IPMS now announced that it has managed to increase the transparency of these microdisplays to 45%. 

Read the full story Posted: Aug 08,2024

Researchers develop a new method to produce 20,000 PPI OLED microdisplays

Researchers from Soochow University and the University of Muenster have developed a method to produce ultra high resolution OLED microdisplays - with up to 20,000 PPI.

To achieve such high resolution, the researchers used a method they refer to as "first surface patterning and then patterned growth". The idea is that the substrate is first patterned using lithography, and then the organic materials are deposited. Following the substrate treatment, the organic materials are diffusing on the substrate, selectively grown on the designated areas.

Read the full story Posted: Aug 08,2024

Next generation OLED emitter development - industry update

OLED emitter materials are the heart of the OLED device, and the materials that make the most impact on the performance of the OLED display. Most OLED displays utilize red, green and blue emitters.

U-M plasmon-excition-polariton blue OLED emitter

The efficiency of the current state-of-the-art commercial red and green OLED emitters is excellent - it is in fact close to 100% internal quantum efficiency (IQE) which means that you cannot improve much on the efficiency of the emitter itself (there's still work to be done on getting the light out of the device). Blue OLED emission is a completely different story - current commercial blue emitters suffer from very low efficiency, around 25%. This means that three quarters of the energy goes to waste. Changing to a 100% IQE blue emitter could end up improving the total display efficiency by 20-30%.

Read the full story Posted: Jul 30,2024 - 2 comments

Researchers develop a promising seqeuntially-coated stretchable OLED device

Researchers from Korea's Yonsei University developed a new highly-promising stretchable OLED device by sequential coating technique. The new device can stretch up to 70% and maintain 80% brightness after 300 cycles at 40% strain. The OLED offers a maximum brightness of 3,151 nits and a total current efficiency of 5.4 cd/A.

The researchers say that standard stretchable OLEDs (what they refer to as intrinsically-stretchable OLEDs, or is-OLED) suffer from reduced performance due to orthogonal solvent problem and also the standard lamination process may cause defects and delamination. The new technique overcomes these issues.

Read the full story Posted: Jul 27,2024

DiaDEM: A Digital Discovery Platform for Organic Electronics - Become a Beta Tester and Secure Free Credits

DiaDEM is a platform to boost the development of organic electronics, providing a one-stop-shop solution from digital discovery to experimental verification. DiaDEM comprises an exhaustive database of materials with optoelectronic properties, advanced scientific models for refinement and direct link to the supply chain for efficient procurement of materials for in-house validation. The platform is now ready for beta testing and looking for beta-testers from both academia and industry. Sign up as beta-tester and secure your free DiaDEM credits.

The DiaDEM platform is developed in an EIC Transition-Open project (Grant Agreement No 101057564) by the University of Liverpool (UK), Nanomatch GmbH (Ger) and Mcule.com Kft. (HUN).  DiaDEM revolutionizes R&D in organic electronics (OE) by providing a digital platform to rapidly identify molecules with the desirable combinations of properties and procure the materials for testing to solve three key challenges in OE R&D: (i) design of molecules is limited to chemical intuition and repeated trial & error, with no way to efficiently find materials with desired properties, (ii) there is no efficient way to assess if materials or combination of materials exhibit desired properties when embedded in a device; experimental investigation requires laborious synthesis, purification, device fabrication and measurement; application of advanced computational models requires high-level expertise in underlying science, command-line tools and high-performance computers, (iii) lack of immediate supply of identified candidates prevents rapid experimental validation.

Read the full story Posted: Jul 22,2024

Expediting innovation timelines for display materials R&D: Join Schrödinger’s live webinar on August 7th

August 7th, 2024 10:00 AM PT / 1:00 PM ET / 6:00 PM BST / 7:00 PM CEST

The rapid evolution of display technology requires the use of cutting-edge research methods to maintain progress. Industry innovators such as Panasonic, Samyang, and Samsung are adopting Schrödinger’s digital chemistry platform to drive innovation in their organic electronics R&D.

This webinar, “Leveraging atomistic simulation, machine learning, and cloud-based collaborative ideation for display materials discovery” will explore the union of physics-based simulations, machine learning (ML), and cloud-native collaboration and informatics tools in revolutionizing R&D innovation for display materials.

Read the full story Posted: Jul 15,2024

Researchers find a new organic molecule with extremely fast phosphorescence, possibly enabling high efficiency OLED emission

Researchers from Osaka University have found that thienyl diketone, a new organic molecule, shows high-efficiency phosphorescence, and one that is more than ten times faster than traditional organic phosphorescence materials. Such a material could hold promise for highly-efficient phosphorescence emission without the use of heavy metals. 

The researchers explain that phosphorescence occurs when a molecule transitions from a high-energy state to a low-energy state, and it often competes with non-radiative processes (i.e. heat generation instead of light). This competition with the non-radiative process leads to slow phosphorescence and lower efficiency. This is solved by adding heavy metal into the emitter - but this new breakthrough achieves fast emission without the heavy metal.

Read the full story Posted: Jul 06,2024

OTI Lumionics and Nord Quantique to collaborate on OLED material discovery using quantum simulations

Canada-based OLED material developer OTI Lumionics announced a strategic partnership with Nord Quantique,  a quantum computing company. The two companies will work on electronic structure calculations, vibronic spectra and ab initio molecular dynamics (AIMD) using quantum simulations. The objective of this testing is to identify improved efficiencies for the development of advanced materials.

OTI and Nord Quantique will look at several applications - including semiconductors, pharmaceuticals and specialty chemicals - and also displays. Specially for the OLED industry, the methods developed during the project will be used to simulate optical and some thermal thin film properties, with an initial focus on emitters and OLED stack materials.

Read the full story Posted: Jun 12,2024