The EU launches a new project to commercialize TADF OLED emitters

Phebe project logoThe European Commission, under its Horizon 2020 programme, launched a new project called Phebe that aims to develop and commercialize TADF OLED emitters. This three-year project's consortium includes Novaled, Astron-FIAMM, TU Dresden, Kaunas University of Technology, Durham University and other companies and universities.

TU Dresden is focusing on material design using theoretical quantum chemical approaches, and KTU is elaborating synthetic schemes for exciplex emitters and intramolecular charge transfer materials and synthesizing the most promising compounds. Durham will perform photophysical characterisation of the new materials from Kaunus and will also be in charge of elucidating the mechanisms of TADF to feed into the theoretical work of TU Dresden. Novaled will provide best-fit transport and doping material sets, technology and expert know-how on stack architecture.

Ason devloped a 50,000 cd/m2 OLED panel, plans to start mass production in 2016

Japan-based Ason Technology unveiled their first OLED lighting panel in 2013, and last year we featured an article discussing the company's technology and business. In a recent interview to Sangyo-Times, the company's CEO reveals some interesting updates.

Ason spent almost eight years to develop a new multi-stack structure that can be used to create OLED with many layers, which results in long-lasting high-brightness panels. The company now reports that it developed an OLED with twelve (!) emitting layers, which enables it to reach a high brightness of 50,000 cd/m2.

LG Display more than double their flexible OLED production capacity

During an investor conference call, Universal Display revealed some new details on LG Display's flexible OLED program. According to UDC, LGD's current production capacity in its 4.5-Gen fab is 14,000 monthly substrates, more than double its capacity (6,000 substrates/month) that was reported in the middle of 2014.

LGD indeed said they expect to double their capacity towards the end of 2014, and that's great news. Some of that capacity will go to LG's own flexible products (such as the G Flex 2 and the G Watch R) - and reportedly also to support Apple's Watch which will launch in April.

Winstar details their PMOLED, flexible OLEDs and OLED lighting developments

Update: the first video was removed from YouTube and is no longer available

Winstar, a leading PMOLED producer from Taiwan, hosted a seminar in June 2014, and they gave two OLED lectures - describing their OLED products in the present and the future development expected from Winstar.

There's some interesting details in there. First of all, while Winstar is currently producing glass-based PMOLEDs, the company is also developing flexible PMOLED panels. One of the major challenges is encapsulation and Winstar is using ALD technology for this at the moment, developed in collaboration with ITRI.

Samsung's new 5.1" QHD AMOLED is more efficient than the 5.1" FHD, was a new emitter adopted?

A couple of months ago, Samsung release the Galaxy S5 LTE-A, that sports the company's latest AMOLED panel - a 5.1" QHD (2560x1440) Super AMOLED. Anandtech posted a long review of this new phone, and they find that the display is actually a little bit more efficient than the 5.1" FHD panel used in the GS5, even though it sports a higher resolution (which usually means a less efficient display as the aperture ratio gets smaller.

Anandtech further says that Samsung told them they switched to a new, improved emitter material for the new QHD panel, which explains the increased efficiency. This is interesting as the QHD display was released only a few months after Samsung started producing the FHD panel, which by itself was 27% more efficient than the previous generation panels - also due to more efficient OLED materials.

Researchers from the University of Michigan developed metal-free phosphorescent OLED emitters

Researchers from the University of Michigan developed metal-free phosphorescent OLED emitters. The idea is that if the emitter molecules cannot vibrate, they cannot release energy and light and so more energy is converted into light. At first they tried creating a stiff lattice (crystalize the emitters) - this achieved 55% light conversion (better than the 25% of regular fluorescent OLEDs, but not as good as the 100% achieved by heavy metal doping).

But this method cannot be adopted for commercial OLEDs easily, and so the second method they tried is to tweaking the organic molecules so that they form structural bonds with a transparent polymer (they attach "like magnets"). This is an easier process, but it achieved only 24% efficiency - similar to a regular fluorescent OLEDs. But they are working on ways to improve this. The important point is that they demonstrated that increasing the intermolecular bonding strength could efficiently suppress the vibrational loss of the phosphorescent light.

Researchers develop metal-free efficient phosphorescence OLEDs

Reseachers from the Universities of Bonn, Regensburg, Utah and the MIT developed a new method to make triplets radiate directly in OLEDs rather than harvesting the triplets by reverse intersystem crossing to generate delayed fluorescence. Basically this means they enabled phosphorescence OLEDs without any heavy atoms at room temperature.

The researchers created new emitter molecules that can store electrical energy for significantly longer than is conventionally assumed. This means that these molecules can exploit the spontaneous jumps in spin orientation in order to generate light - so the energy that is lost as heat in regular fluorescent OLEDs is released as light in those molecules.

Ason Technology show their MPE OLED lighting panels

Ason Technology was established in 2006 in Japan to develop OLED lighting technologies. The company finally unveiled their first OLED lighting panel during the FPD International 2013 exhibition last month.

Ason's panel use Multi-Photo-Emission (MPE), which is a stacked emitter architecture, which is also used by Lumiotec. Usually MPE panels use about 3 layers, but Ason managed to stack 10 or more emitting layers which enables them to reach a very high brightness and CRI. Ason also developed their own diffusion reflection layer so that the emitted color does not change even when viewed from different angles.

First-O-Light developed a 111.7 lm/W hybrid OLED device

Updated: This story had some inaccuracies and is now updated with new information from First-O-Lite

China's First-O-Lite says they developed an efficient (111.7 lm/W at 1,000 cd/m2) hybrid OLED lighting device (2 cm2). This is a hybrid device that uses a fluorescent blue emitter along with red and blue phosphorescent emitters. The company says that this is probably the most efficient hybrid OLED device ever produced that can meet the Energy Star color requirements.

First-O-Lite has established a volume production fab and will soon start producing OLED panels. These will feature over 55 lm/W (at 3,000 cd/m2) and will use the company's external light extraction technology.

On Cynora's copper-based TADF OLED emitters

Cynora is a German startup established in 2003 that developed copper-based OLED emitter systems. In October 2012 the company unveiled a mostly-solution-based flexible OLED prototype, developed in collaboration with InnovationLab. Last month Germany’s BMBF launched the cyCESH project which aims to develop soluble (printable) materials for low-cost high efficiency OLED lighting devices. Cynora is the leader of the consortium in this €6 million project, together with Novaled and the University of Regensburg.

Cynora's technology is interesting and the company's CEO Dr. Tobias Grab and the company's Business Development manager, Dr. Mathias Mydlak, were kind enough to provide the information for this article explaining the company's technology.

Cambridge Isotope Laboratories - Deutreated Reagents and High-Purity Gases for OLEDsCambridge Isotope Laboratories - Deutreated Reagents and High-Purity Gases for OLEDs