A Q&A with Cynora's CEO, to discuss the company's new blue emitter

OLED material developer Cynora recently announced its first commercial product, the cyBlueBooster fluorescent blue emitter that is 15% more efficient that current fluorescent blue emitters on the market.

Cynora cyBlueBooster OLED closeup photo

This was a very interesting announcement, and Cynora's CEO Adam Kablanian was kind enough to answer a few questions we had to help understand the new material and Cynora's current business and latest technology.

Cynora announces a new blue fluorescent emitter that is 15% more efficient than current emitters

OLED material developer Cynora announced its first commercial product, a fluorescent blue emitter that is based on an "advanced molecular design" that is 15% more efficient that current fluorescent blue emitters on the market. Cynora brands its new material as cyBlueBooster, and it says it is currently available for commercialization in several shades of blue.

Cynora cyBlueBooster OLED devices photo

This could be very exciting news - while the whole industry is looking for next-generation emitters using TADF or PHOLED technologies, Cynora could have found an easier path to reduce power consumption by 15%. OF course a TADF or PHOLED emitter will achieve a reduction of 75% in power consumption compared to currently-used fluorescent emitters.

Idemitsu Kosan and Toray developed a red TADF/HF device that is the world's most efficient OLED emitter

Idemitsu Kosan and Toray Industries announced that the companies have jointly developed a red OLED device that is the world's most efficient emitter at 46 cd/A. The device uses a TADF emitter combined with red fluorescent materials (which likely means this is a HyperFluorescence device).

Idemitsu and Toray has been collaborating on OLED material development since 2017. This new device uses Idemitsu's TADF material combined with Toray's new red fluorescent material. The two companies say that this new material provides the same results as currently used red phosphorescent devices, and the plan is now to "drive forward to secure adoption of their materials" in mobile and TV applications.

Researchers from RUDN University developed OLED emitter compounds based on silver and copper doping

Researchers from RUDN University in Russia have synthesized new OLED emitter compounds. These compounds seem to be phosphorescent emitters, based on copper and silver atoms.

Copper and Silver OLED emitter compounds (RUDN University)

The researchers say that the compound platform they created can lead to efficient and cost-effective OLED emitters, and also offer a special molecular geometry that can enable freedom-of-design for developers.

Wisechip launches the world's first Hyperfluoresence OLED display - a 2.7" yellow PMOLED

Wisechip announced that it launched the world's first Hyperfluorescence OLED display - a 2.7" monochrome yellow 128x64 PMOLED. The brightness of this display reaches 220 nits - which is 2.5 times the brightness of Wisechip's fluorescent yellow PMOLED. The lifetime of this display is 50,000 hours.

Wisechip yellow Hyperfluorescence pmoled product (Oct 2019)

Hyperfluorescence OLED emitters represent the 4th-generation of OLED emitter systems. HF is an actually a system that combines fluorescence emitters (1st-gen) with TADF (3rd-gen) hosts - to achieve a high efficiency , long lifetimes and narrow-spectrum emission.

UDC: our RGB1B2 AMOLED architecture minimizes blue light hazard

In 2010 Universal Display announced a new AMOLED display architecture called RGB1B2 that uses two blue sub-pixels - a fluorescent deep-blue and a phosphorescent light blue. The introduction of a light blue sub-pixel can significantly extend the operational lifetime of an OLED display and reduce the display's power consumption by as much as 33%.

UDC RGB1B2 AMOLED architecture, blue light (OLED Korea 2019)

The RGB1B2 was never adopted (one of the reasons is that adding another sub pixel complicates the TFT backplane and has other disadvantages - but the architecture is now again on the table and UDC presented it again at OLED Korea 2019.

Researchers develop 100% IQE radical-based OLED emission

Researchers from the University of Cambridge and Jilin University discovered that radical-based OLEDs feature highly efficient emission - in fact they believe that this discovery could be an elegant solution to the problem of in-efficient OLED emission.

First-generation OLED emitters (fluorescent emitters) have a maximum internal quantum efficiency of 25% - as only a quarter of the electrons are in a singlet-state (that emit light) while 75% of the electrons are in a triplet-state. Current ways to achieve 100% IQE are either based on doping with heavy metals (phosphorescent emission) or either based on delayed fluorescence (TADF).

DSCC: Samsung to begin pilot QD-OLED production in 2019

DSCC estimates that Samsung will begin pilot production of QD-OLEDs in 2019, with a capacity of 5,000 monthly 8.5-Gen substrates. If this is successful, Samsung will double the capacity in 2020 and add a further 30,000 yearly substrates in 2021 and again in 2022. Material revenues for Samsung's QD-OLED TVs will reach $56 million in 2022.

Material revenue forecast for QD-OLED TVs (DSCC, 2016-2022)

DSCC admits, though, that as Samsung faces several technical challenges before it could launch commercial QD-OLED TVs, its forecast could be way off - there's a good chance that SDC will cancel the project, or it could increase capacity at a much faster rate than DSCC estimates and even scale-up production to 10.5-Gen.

An interview with Cynora's CMO Dr. Andreas Haldi - talking about TADF, lifetime, color points and more

German TADF developer Cynora presented its latest blue TADF material in May 2018 - with a CIEy of 0.14, EQE of 20% and a lifetime of 20 hours LT97 at 700 nits. Cynora expects to have blue material in the mass production by 2020.

Dr. Andreas Haldi - Chief Marketing Officer Cynora

Cynora's Chief Marketing Offer, Dr. Andreas Haldi was kind enough to answer a few questions we had regarding TADF emitters, the differences between next-generation emitter technologies, lifetime, color points and more.