Fraunhofer researchers developed flexible modular OLED light strips

The Fraunhofer FEP institute developed OLED light strips made from tiled flexible OLED lighting panels. The new strips can be produced in any length and will be on display next week at the International Symposium on Automotive Lighting 2019 in Darmstadt, Germany.

Fraunhofer OLED light strips photo

The Fraunhofer FEP produces the flexible OLED panels in a sheet-to-sheet process, and in such a way that they can be connected without creating visible interruptions to the active surface. This makes it possible to produce infinitely long OLED light strips. Each segment can be controlled individually - so that different dimming or dynamic signalling can be achieved.

Read the full story Posted: Sep 17,2019

The EU to continue and support the PI-SCALE / LYTEUS project

In 2016 the EU launched the PI-SCALE project, which established a European-wide roll-to-roll flexible OLED lighting pilot production line, with an aim to enable companies of all sizes to quickly and cost effectively test and scale up their flexible OLED lighting concepts. In 2018 the EU has launched a €14 million initiative within PI-SCALE called LYTEUS, which provides the expertise and capability required to progress an OLED lighting concept from an idea and into a commercialized product.

Sample OLED lighting designs, Lyteus 2019

The PI-SCALE project has successfully been completed, and the Fruanhofer FEP institute now announced that following a meeting with the EU Commission representatives, it was decided that the OLED lighting pilot line services will continue to be funded, under the lead of the Fraunhofer FEP. The pilot line service will continue under the name LYTEUS.

Read the full story Posted: Sep 13,2019

The Fraunhofer FEP developed a 0.64" 720p OLED Microdisplay

The Fraunhofer FEP announced that it has developed a new OLED Microdisplay specifically for industrial Augmented Reality (AR) data glasses.

Fraunhofer FEP 0.64'' 720p OLED Microdisplay photo

The new microdisplay features a 720p (1280x720) resolution with a diagonal size of 0.64-inch (subpixel size is 5.5 micron). The power consumption is 160 milliwatt at 120 fps. The Fraunhofer says that the new display features simple driving electronics for an easy integration into portable systems and is already available as evaluation kit.

Read the full story Posted: May 01,2019

Fraunhofer FEP and EMDE to demonstrate textile embedded flexible OLED lighting

The Fraunhofer FEP institute has teamed up with OLED lighting developer EMDE development of light to demonstrate wearable OLED lighting based on flexible OLEDs integrated into textile designs. The OLED demonstration will be unveiled at LOPEC 2019.

Textile embedded flexible OLED prototype (Fraunhofer,  EMDE, PI-SCALE) photoThis project is part of the EU-funded PI-SCALE project, which recently demonstrated 15 meters long flexible OLED lighting panels. The Fraunhofer FEP says that they have taken a major step forward for the economical fabrication of OLED lighting devices based on the roll to roll process.

Read the full story Posted: Feb 20,2019

LetinAR adopts the Fraunhofer's FEP low-power OLED microdisplays in its new pinhole effect PinMR AR technology

The Fraunhofer FEP institute has teamed up with Korean-based LetinAR to develop an ultra-low-power OLED microdisplay based optic lens for AR applications. The Fraunhofer and LetinAR will present the new technology at MWC 2019.

LetinAR & the Fraunhofer Institute - OLED microdisplay and optic photo

LetinAR's PinMR technology uses the Pinhole Effect with tiny mirrors and embedded them with eyeglass lenses. The PinMR mirrors reflect the light generated by a microdisplay and guide it into the user's pupils. Users may view the virtual image created via microdisplay equipped with magnifying see-through optics as well as the image from the real world at ease. Human eyes cannot detect the mirrors, which are smaller than pupils. Only the virtual image formed by the light reflected by those mirrors is visible.

Read the full story Posted: Feb 10,2019

Researchers from the Fraunhofer FEP developed a blue OLED based phosphorescence sensor

Researchers from the Fraunhofer FEP Institute developed a miniaturized OLED-on-silicon based phosphorescence sensor. Such sensors are used today typically for oxygen concentration measurement. The researchers say that this technology enables a small-sized sensor that offers a fast and precise evaluation. In the future such sensors could be produced at a relatively low cost.

Blue OLED based phosphorescence sensor (Fraunhofer FEP)

The new sensor is based on a chemical marker that is excited by modulated blue OLED light. The phosphorescent response of the marker is then detected directly inside the sensor chip. The OLED device is 4.7 x 2.2 mm in size. The researchers hope to be able to reduce the size of the entire chip down to 2 x 2 mm.

Read the full story Posted: Jan 29,2019

Lyteus partners demonstrate the world's longest flexible OLED lighting device at 15 meters

The Fraunhofer FEP institute, the Holst Center and other partners have developed a 15-meter long OLED lighting panel, the longer OLED device ever (beating their own 2017 record of a 10-meter OLED). This work was done as part of the Lyteus, the EU's €14 million initiative within PI-SCALE.

Lyteus 15 meter OLED lighting roll
The partners in this project say that this is the first OLED produced using a new unique roll-to-roll (R2R) process that combines the performance of an evaporated OLED stack with solution processing of auxiliary layers.

Read the full story Posted: Nov 23,2018

The Fraunhofer FEP developed a wearable OLED lighting button, is ready to help commercialize the technology

Researchers at the Fraunhofer FEP institute developed a new wearable OLED-based "button" that can be integrated into textiles. The OLEDs can be designed in any shape, be transparent, dimmable and also patterned. There is also a two-color variant.

Fraunhofer FEP O-Button photo

The Fraunhofer developers say that such elements can be used for fashion trends, branding, safety applications, light therapy and more. The so-called O-Button is based on an OLED deposited on a wafer-thin foil combined with a micro-controller on a conventional circuit board.

Read the full story Posted: Sep 21,2018

Fraunhofer researchers use electron beam to micro-pattern OLED microdisplays

Researchers from the Fraunhofer FEP institute developed a new micro-patterning process using an electron beam to produce OLED microdisplays on silicon substrates. This could enable a new way to produce direct-emission OLED microdisplays, which will be more efficient and bright compared to the current ones that use color filters.

Electron Beam Patterning for OLED microdisplays (Fraunhofer)

The electron beam patterning is performed after the encapsulation step - the beam goes through the encapsulation layer and can be used to modify the emission of the OLED materials. To create red, green, and blue pixels, an organic layer of the OLED itself is ablated by a thermal electron beam process.

Read the full story Posted: Aug 07,2018

The Fraunhofer FEP demonstrated the LOMID 1-inch OLED microdisplay at SID 2018

In January 2015 the EU launched the LOMID project to develop next-generation large-area OLED microdisplays, and in 2017 the partners in the project announced the production of a 1-inch diagonal 1200x1920 (2,300 PPI) 120Hz curved OLED microdisplay.

The Fraunhofer FEP demonstrated this panel at SID 2018, as you can see in the video above. The institute also demonstrated a new design which uses two such panels and special optics to provide double the resolution for each eye.

Read the full story Posted: Jun 09,2018