OLED-T Low Temperature Electron Injector Improves OLED Display Performance

OLED-T today announced the launch of its low temperature organic electron injector material EI-111-2Me. OLED displays are manufactured from a sandwich of different materials including the electron injector layer. This layer is responsible for injecting electrons from the cathode into the OLED structure, the efficiency of which is critical to the performance of the display.
 
EI-111-2Me is a low temperature replacement for Lithium Floride (LiF), the material typically used by OLED display manufactures as the electron injector layer within an OLED display. Low temperature OLED materials reduce the cost of manufacturing and the potential damage to the underlying layers of the display, thereby improving the lifetime and voltage drift over the lifetime of the OLED device.

EI-111-2 Me enables display manufacturers to improve the efficiency and lifetime of an OLED display, as well as reduce the operating voltage and minimising voltage drift. In customer trials using EI-111 as a direct replacement for LiF, display efficiency improved by 25 per cent and lifetime by 10 per cent.

EI-111-2 Me evaporates at 200oC as opposed to LiF which requires a temperature of over 600oC, making the deposition faster and more controlled and introducing the potential of using plastic as a substrate rather than glass. The reduced manufacturing temperature also eliminates the need for costly evaporation crucibles reducing the overall cost of manufacturing.

As the market for OLED matures display manufacturers are focused on reducing cost throughout the display supply chain. EI-111-2Me provides companies with a significant opportunity to reduce cost at the same time as improving the performance of OLED displays, said says Myrddin Jones, Chief Executive Officer at OLED-T.

OLED-T is sampling of EI-111-2Me with immediate effect and will commence volume production from the fourth quarter of 2008. The new material complements OLED-T’s already strong OLED material portfolio.

Posted: Apr 10,2008 by Ron Mertens